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1. STATIC AND SPINNING SPECIMEN

MEASUREMENT OF THE SUSCEPTIBILITY

In most magnetic susceptibility bridges the static specimen
measurement method is used. In the specimen a system of n direct-
ions is defined, which is called the design of measurement. The
measurement consists of n elementary steps. In the m-th step the
specimen is inserted in the measuring coil in such a way so that
the m-th direction may coincide with the measuring coil axis. The
measuring design cannot be chosen arbitrarily. It is necessary,
but not sufficient that the design may have at least six direct-
iens. In practice a bigger number is used for several reasons,
e.g. 15 in the bridge KLY-2, or in a bridge KLY-3 in manual mode

when using the program SUSAM.

In the spinning specimen method the position of the specimen
is also changed, but continuously instead of discrete steps. The

specimen is rotated about 3 axes perpendicular to one another.
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The output signal is harmonic, composed from sine and cosine com-
ponents. Its frequency is twice the frequency of rotation. From
this signal the anisotropy can be computed, but the measurement

must be completed with one measurement of bulk susceptibility.

In case of the static specimen measurement the mathematical
background is less complicated. The bridge need not any exacting
mechanical parts. Although the manipulation with specimen is
easy, it is time consumpting and requires many manual operations.
On the other hand, the method of spinning specimen needs consi-
derably more complicated mathematical metheods, which is of course
not the problem of the user. It also requires an exacting
mechanism for inserting the specimen and spinning it. The measnr-
ing procedure is substantially more rapid and the need for manual
manipulation is reduced to minimum. But the most important
advantage consists in fact, that the sensitivity as well as the
accuracy of computed main directions are substantially higher

than those of static specimen method.

2. DIRECTIONAL SUSCEPTIBILITY

Regardless of the method used, in every position of the
specimen, so called directicnal susceptibility is measured that
corresponds to that direction in the specimen which coincides
with the coil axis. Since the directional susceptibility repre-

sents the basic notion of the theory of measurement, the more
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detailed explanation is needed.

Let us have a specimen 8 (Fig. 1) in a magnetic field H whose
direction is 4. The induced magnetization will be denoted M. In
an anisotropic matter in common case the direction of M will

differ from the directions of H or d.

Now we project orthogonally the vector M to the direction of H

or 4 and denote the length of projection M The ratio

(1} & =M /H

D pul

is the directional susceptibility corresponding to the direction

d.

Fig 1. To the definition of the directional susceptibility

3.SUSCEPTIBILITY AND DEVIATORIC SUSCEPTIBILITY
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For the subsequent considerations the specimen cordinate
system is wused. It is a cartesian coordinate system whose axes
xl, X_, x3 are conhected with some well-defined directions on the
specimen. (In case of a cubic specimen are used the directions

determined by the edges of it.)

From the physical point of view, the magnetic susceptibility
is a symmetrical tensor of second rank. It can be egquivalently
expressed by a square matrix 3 by 3. Due to this possibility one

may write

(2) k = x k k
a1 1= 13
k k k
=231 2= 23
kK k k
L a1 az 33
where k = k for i, =1, 2, 3
13 31 i

Here k is the (matrix representation of):?écheptibility tensor

which is also called full succeptibility tensor.

From the rotational measurement it cannot be determined the
full tensor k, but only s.c. deviatoric tepsor g which is defined

in following way R E 1

(3) g=k- =&l

where = iz the mean susceptibility, & = (k + k_,  +k_ .}/ 3 and

fn W B
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I is the identity matrix which has in principal diagonal 1's and
in non-diagonal positions 0's. It is obvious, that for the "mean"

deviatoric susceptibility holds

(4) B=1(g,, *+9,, +9,,})/3=20

4. PRINCIPAL SUSCEPTIBILITIES AND PRINCIPAL DIRECTIONS

Let us denote the eigenvalues of the matrix Kk through = , = ,

a =2

2 and the respective eigenvectors through p , p, B . These
3 N =2 <3

gquantities satisfy, as well known, the relation

(5) kp ==2p (i =1, 2, 3)

The wunit vectors p are called the principal directions, the
4

respective numbers a principal susceptibilities. Formal reasons
i

will make us choose a numbering of quantities that & => & 2 2 .

a =2 b

Then the principal susceptibilities in order considered are

called maximum, intermediate and minimum susceptibility.

The matrix of deviatoric susceptibility g can be treated in the
same way. Thus the principal deviatoric suceptibilities 8 , B8 ,
1 =

B are got and the same principal directions as in the preceding
3

case.,
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The principal directions p , p , p define a new coordinate
a 2 3
system which is called the principal coordinate system and has

axes x*, xt, x°. It will be discussed later.
x 2 3

4. THE ELEMENTARY METHOD OF COMPUTING

THE DEVIATORIC TENSOR FROM THE THREE ROTATIONS

The simplification in this section is based on fact that for
the time being all statistical considerations will be left out.
Let us imagine rotation of cylindrical specimen 8 (which is for
determinateness considered as cylindrical) about the axis x_ that

is oriented upwards, see Fig. 2.

Fig. 2 Spinning of a cylindrical specimen
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Using the above definition, one may write for the instant-

anecus directional susceptibility

(3) 23 = [cos 8 sin e o].| k k k . cos 8
D e 12 a3
k k k sin &
=23 22 =23
k k k 0
L =3 axz E B ]

The superfix indicates, that the directional susceptibility is
related to the axis x_
After a simple algebra we obtain

(4) 23> = Y(k +k )+ %k -k ) cos 26 + k sin 26
D 12 22 11 =2 1

=2

and by cyclical permutation of indices

21 = Lfk + Kk )+ 4k -k ) cos 20 + k sin 2e
=22 33 =22 33 2

| = 3

2% = L{k + k )} + %k -k ) cos 28 + Kk sin 2e
D 33 W =3 ju s 23

Note that if the specimen rotates with a constant angular speed
making f r.p.s, the directional susceptibilities are harmonical
functions of t with the frequency 2f. In practice usually very

low frequency is used, say of the order 0.1 Hz.

By measuring three curves are cbtained that are characterized
by cosine coefficients a and sine coefficients b . The constant
i Y

"DC" componenkts are not considered.

(6) y¢3®’ = a cos 26 + b sin 26
3

3

y¢) = a cos 20 + b sin 20
a

3

y¢%? = a cos 20 + b sin 26

=2 =
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For determining coefficients one half-revolution would do, but
usually a bigger number m of half-revolutions is used and the

results are averaged.

Comparison of the of the cosine and sine components in Egs (5)

and (6) with concemitant replacing symbeols k by symbels g
i3

117
yields
(7) g =b, g =b, g =2D>b
iz 3 23 a e 3= B =2
(8) g -9 = 2a
il 22 3
g - = 2a
22 a3 1
-g + g = 2a
iy a3 =

The Eqs (8) represent directly the solution for non-diagonal
elements of the computed deviatoric tensor, but the seolution of
the Eqs (8) is not so easy as it may appear. He who is familiar
with slementary linear algebra sees at a glance that the systen
of Egs (8) has a singular matrix. We shall assume, that the
quantities a,a,a, do not egual zero simultanecusly. Then the

solution exists if and only if

(2) a +a +a =20

But the solution is not unique, there is an infinite number of
solutions. In this situation we - guite naturally - assume that

the condition (4) is met. In this case the solution is unique.



The complete sclution for g can be written in a matrix form
13

as follows

2 '\ 3 1 - 7
(10} | ¢ = -2/3 2/3 . a
11 T
g 2/3 -2/3 a
=22 =2
g -2/3 2/3 a
F3 hc |
g 1 b
A2 a
g 1 b
g 1 b
L pe. Ju L J L 3 J

The above smart mathematical theory is, unfertunately, of
little practical use. In measurement, the condition (9) is always
fullfiled only approximately which is the conseguence of measur-
ing errors. So we must search a compromise solution which is in
certain sense optimum. For such a solution the Least Squares
method is used as a rule. Strange may it appear, but this method
yields precisely the result (10). When applying the Least Squares
method, we usually simultanously estimate the errors of measure-
ment. In this case this estimate would be useless since the task
has one degree of freedom only. (Six components are measured and
five independent parameters are determined). The estimation of
errors would thus be extremaly poor. How to avoid this principal

disadvantage will be explained in the next section.
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5. LEAST SQUARES METHOD WITH INCREASED DEGREES OF FREEDOM

The basic idea is very simple. When rotating about certain
axis we can divide the complete rotation formally in N partial
measurements (each consisting of m half-revolutions). If e.qg.
number N = 2 (N = 4) then for cosine and sine components we
obtain 12 (24) values; since we determine 5 independent elements
of the tensor, the problem has 7 (19) degrees of freedom. The ex-
perience shows that 7 degrees of freedom is sufficient for esti-

mating errors, so we restrict ourselves for simplicity's sake to

N = 2.
Measured components Averages
(11) z. = a,
} a
a1
z = a
2 iz
z_ = a
3 21
} a
=2
zZ = a
£ =22
z = a
=] e Y
} a,
z = a
= e -
z7 = bll
} b
a
z = b
s 1z
zg = bZl
} b
=2
z = b
aio =22
zll = b31
} b,
4 =b
= 32
Symbols z , i =1 to 12 are introduced for the numbering of

searched tensor components to be simple.

The Least Squares solution is again described by the Eq. (10)

without any changes.
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5.1 BASIC STANDARD ERROR AND ITS ESTIMATE

We are now standing at the very threshold of the statical
problems. Such considerations are rather complex and 1lie far
beyond the scope of this work. Nevertheless, it can be useful to
give a very brief coverlook cf the problem so that the user may

understand the results of the program better.

We are entitled to assume that all measured components z ,
a

Z, ..., Z have the same standard error ¢ and are independent
2 iz

one to another. The quantity ¢ will be called the basic standard
error of the problem considered, its statistical estimate will be

denoted s.

ILet 5§ be so called residual sum of sgquares,

a

(12) § =5 =R

where & is sum of squares of the 12 measured values,

(13) 5= 35 z=

(14) R=N[- (g2+9° +4g g ) +g> +g® +g* ]
2 s e Y =22

The estimate s of basic standard error will now read
{15} s =

(11)



Remark: The carets (°) in Eg. (14) emphasize that the
respective quantities are merely the estimates of the respective
true gquantities. This denotation is necessary in statistical

considerations.

5.2 COVARIANCE MATRIX OF THE COMPONENTS OF TENSOR

The tensor of deviatoric susceptibility being symmetrical can

alternatively be expressed by a six components vector

(16)

g=[g ,9 9 .49 :gzsrgg3'“—"[gp9;9'3:9’4;9',9‘6]'

13 22 33 iz 3 1 =2 b=1

The respective estimates will be denoted in similar way using

carets.

Note that for certain statistical consideraticons also
only a five elements vector can be used. This is enabled by the
fact that the three main components of the tensor are controlled
by the linear condition (9). This method, however, will not be

adopted here.

For the random variables ¢ ,qg , -.--,9 the covariance matrix
i =2 [

can be written as follows

(17} 62V = g2 |V ,V , ..., V
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In the above eguation V is the covariance of the random va-
13

riables é and é (i, =1, 2, +.., 6). The symbol 0% is the
i j

gquadrate of basic standard error (the basic dispersion), and ¥ is

certain matrix of constants which is called the skeleton of

covariance matrix.

Under practical conditions we have no knowledge on the true
covariance matrix V. We are, therefore, only able to draw on the

corresponding estimate ﬁ
(17) ¥ = 53V

where =2 is the quadrate of the estimate of the basic standard
error (the estimate of basic dispersion). The matrix ¥V is

assumed be the same as in Eq.(16).

6. TENSOR IN PRINCIPAL COORDINATE SYSTEM

For statistical considerations is very useful to express the
tensor in the principal coordinate system with the axes xf, x:,
xi defined by the triad of vectors p.,p.,p or in the estimated
principal coordinate system defined by the triad of vectors él,

é ’ é . Which system is used is obvious from context as a rule.
=2 3

The tensor components will be denoted g¥ (i, =1, 2, 3)
i3

or g (k=1, 2, ..., 6), the respective estimates gij and
x

9
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The covariance matrix in principal coordinate system will read

(18) o3vE

Transforming V to VF is rather complicated task, nevertheless the
respective computer program works very fast. Note that in some
special c¢ases - when the method is "rotatable" - the skeleton
matrix ¥ is invariant with respect to the transformation of
coordinates. This is e.g. the case of the static specimen method

of mesurement in 15 directions.

7. TESTS OF ANISOTROPY

7.1 THREE-DIMENSION ANISQTROPY TEST

This test serves to verify whether the differences between the
the estimated principal susceptibilities compared to measuring
errors are great enough for us to be entitled to consider the

specimen as anisotropic.

Two hypotheses will be considered:

H - that the specimen is isotropic (zero hypothesis) and
[=]

H - that the specimen is anisotropic (alternative hypothesis).
a

Under the zero hypothesis H_, the random variable

g =R / ¢ , where R is given by Eg. (14), has A?® (chi-sguared)

distribution on 5 degrees of freedom. Furthermore, the expression
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8% / 6® - regardless to H =~ has the distribution XS4 mo,
o
which is independent on (. The constant m = 6N - 5 and in the

case considered m = 7.
As a consequence, the statistic
(20) F=(0 /8) /(8% /g% =R/ (55%)

has F-distribution on 5 and m degrees of freedom. In the case

considered m = 7.

Let us consider the (100 - g) % quantile of F-distribution on
5 and m degrees of freedom. It will be denoted F .
5, my (1 - a)
In case
(21} F>F

5, m, (1 - a)

we shall reject the hypothesis H_ (that the specimen is
isotropic) in favour of #, (that the specimen is anisotropic) on
the level of significance of (100 - a) & . In the opposite case

we are not entitled to reject H_ in favour of #, on the given

level of significance.

The above formulation is exact from the mathematical peint of
view, but, unfortunately, not easy to understand. Therefore we
shall try to give an explanation in more lucid way. Let us make
an arfangement that the level of significance will be 95 % as it
is usual in most rock magnetic works. When we measure many times
a perfectly isotropic specimen and follow the above instruction
for each individual case then in 95 % cases we chall come to the
correct conclusion that the specimen is isotropic, but in the re-

maining 5 % cases we shall make the false conclusion that the



specimen is anisotropic. This false conclusion is called the
error of first kind. When, on the other hand, we measure weakly
anisotropic specimen, we shall make false conclusion from time to
time that the specimen is isotropic. This is the error of second
kind. The evaluation of the probability of the second kind error
needs very refined statistical methods that cannot be discussed
here.

Note that the 95 % quantile

F = 3.9715
5, 7;: 95

The essential purpose of the F-test is thus to eliminate the
cases of "apparent" anisotropy that is the conseguence of measur-
ing errors only. According to the wvalue of statistic F it can be
be judged the "guality™ of suceptibility measurement. One must
realize that the statistic F is guadratically dependent on this
intuitive "guality"™. No wonder that in measuring strongly aniso-
tropic speciﬁens very great values are obtained of the order of

thousands and more.

7.1 TEST OF ROTATIONAT, ANISOTROPY

In practical application we often come across a case of an
approximately rotational anisotropy. There are two types of such

an anistropy. In the first type

(22a) 2 ® = while &2 « &, = i.e.

1 2 =2 =5 =2

B B B « B , B

R =2 < = z

s
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(This type is very frequent in sediments where the axis x* is
a

perpendicular to the bedding planes.) In the opposite case

(22b) E &2 while 2 » & , ® i.e.

To be brief we shall discuss the first type only, the second type

being the precise analogy of the first one.

The test conzidered serves to verify whether the difference
between the measured principal susceptibilities él and ﬁz
compared to measuring errors are dgreat enough for us to be
entitled +to consider the specimen as anisotropic in the plane
{(x¥, x7).

1 =

The zero hypothesis HD will now be the statement that the
specimen is isotropic in the plane (x:, x:), i.e. has rotational
symmetry with respect to the axis x:, and B1 = B . The

=

alternative hypothesis H will be the statement, that the
N
specimen is anisotropic in the plane (x , x ), i.e. is triaxially
a =2
anisotropic, and B =/= 8 .
.

=2

The statistic for testing will be

(23) F=2 (B - B) /(257

3

where £ is certain constant which can be computed from the
3
skeleton V® of the covariance matrix in the principal co-
ordinate system. Deriving of Z is easy but rather tedious there-
3

fore it will be omitted. Under the =zero hypothesis H , the
o
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statistic F has the F-distribution on 2 and m degrees of freedom.

Consider (100 - @) % guantile F of the F-distri-
2, », (1 - a)
bution on 2 and m degrees of freedom. If

(24) F>F
2, m, (100 - o)
the zero hypothesizs H will be rejected in favour of the
[=]
alternative hypothesis H at the level of significance
B

(100 - a) %. If the inequality (24) is false the zero hypothesis

H cannot be rejected at the level of significance {100 - «) %.

In the problem under discussion m = 7. The conventional level
of significance will be chosen, wviz. 95 %. Thus the numerical

value of the quantile will be

F = 4.,7374

The practical explanation of the result of the test is quite

analogous to that in section 7.1.

8. CONFIDENCE REGIONS AND ANGLES OF PRINCIPAL DIRECTIONS

Due to the measuring errors the principal directions cannot be
determined accurately. Fortunately, we can give a good

statistical estimates of their reliability - the confidence
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regions and confidence angles. For better intelligibility's sake
the third principal directions will be considered. The reader can

re-write the results for the first and second directions easily.

8.1 ASSOCIATED PROBLEM OF PROBABILITY CALCULUS

To begin with, the problem will be discussed from the pecint of
view of prokability calculus - it will be assumed, that the
actual principal susceptibilities and principal directions are
known.

In Fig. 3 the problem of variation of the 3rd principal
direction is depicted. In certain measurement the direction éj
will differ from the true direction P by the vector dga lying in
the plane o which is perpendicular to p and whose components

3

in directions p and p are dp and dp respectively. One can get
a 2 B =

easily
(25) dap =dgT /(B - B )
a3 e B I =3 s
dp =dg- /(B - B )
=23 23 3 =2

dp =dg"p / (B -8B ) +dgt p /(B - 8B)
3 31 1 >3 i =23 =2 3 2
To make the egquations easier to survey, the index "3" in the
rightmost peosition will be omitted wherever possible. Using this
convention instead of dp and dp we shall rather write dp and
a3 23 5

dp etc.
=2
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Fig. 3 Variations on principal vector p
a3

From the covariance matrix o¢*V* using Eqs(25) one can find the

covariance matrix of the components dp and dp ,
13 2

(26)

VP

a4

(8 - Bl)z

VP

&5

(B =8 )8 - 5)

(20)

ha. §

&5

‘B - B)B -8

VP

55

(8, - 8)°




The guadratic form

(27) Q0 =[dp dp 1" W™
X 2 dp

dp

=2

has K?—distribution on two degrees of freedom., Drawing on
Eq. (25) an ellipse E3 can be constructed which will eliminate
(100 - a) % of the least probable positions of the vector 93.
This ellipse is called tolerance ellipse and can be defined by
the equation

(28) Q* = %
2;(100-a)

Denocte the eigenvalues of the matrix W (not W %)

the respective eigenvectors

ic ¢ ]1' and Ic ¢ 1

aa 22 az =2
The lenghts of the semi-axes of the ellipse E will be
3

%
(29) e = o8 x‘ e = g§
T1 1 2;(100 - a) T2 2 27 (100-a)

and will be located along the directions
(30) ¢ p +c p and ¢ p +¢ p
a1 23 2 iz a 22 =

The ellipse E will be projected centrally onto a unit spherej in
3
this way we arrive at the region in which (100 - a)% of the

terminating points of the estimated vectors p are located. The
3
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projecticon of tolerance ell

lenghts of the proijections o

(31) e = tan™" e

taken as arches are called
been introduced again to em

deal with the third principa

8.2 STATISTICAL PROBLEM

Under practical condition
actual tensor g® nor of the
is necessary te draw on the

ép
It will be assumed that the
timate of covariance matrix
basic dispersion s*, while t

can write

ipse is called tolerance region. The

f the axes of the tolerance ellipse

and e = tan™" e
=23 T2

tolerance angles. The index "3" has

phasize that these tolerance angles

1 direction.

we have knowledge neither of the
covariance matrix o*WT. Therefore it

respective estimates

and oW

only source of variations in the es-
is the variation of the estimate of

he skeleton W is fixed so that one

(32) o”

(22)



The guadratic form

(33) F' = [dp dp }' (1 / s7) W*
=1 =2 dp

dp

=

T
unlike +to the form in Eq. (27), has not the X -distribution.

A formal rearangement of Eg. (31) yields

F' ={dp dp ]' (1 / o®) W " 5=

=)
i

3

The dividend has obviously % -distribution on 2 degrees of
2

freedom, while the divisor has X% -distribution on 7 degrees of

freedom divided by 7. Thus the statistic
(33) F=F /2
has F-distribution on 2 and 7 degrees of freedom.
The further procedure will be similar to that in Section 8.1.
The ellipse ﬁa lying in the plane iz given by the equation
2, 7: (100-a)

will be consructed and called the confidence ellipse of the third
principal direction p, on the level of significance (100 - «a) %.
The eigenvectors of the matrix W determine the directions of the
semi-axes of ﬁz. Let 61 and 62 be the eigenvalues of matrix

ﬁ (not ﬁ‘l). Then the lenghts of semi-axes will be

(23)



(35)

®
i

)%
s{26 F
T13 ( 2, 7, (100-a)

%
2, 7, (lOO—a))

e = &{268 F
T23

The index "3" has Jjust been introduced again. The central pro-

jection of E onto a unit sphere is the confidence region R . The

lengths of projection of semi-axes of ellipse E , taken as angles,
=

are

(36) e = tan™" e and e = tan™t e
i3 b wle N ) 23 =23

and are called confidence angles of the third direction.

Note that the respective results for the first and second
principal directicn can be obtained simply by the cyclical permu-
taticns of indices.

The meaning of the confidence region is not so lucid as that
of tolerance region. To begin with, it is essential to emphasize
that the tolerance region is a fixed object while the confidence
region is a random object. That is why it is denoted by a letter

with a caret (N).

When measuring the same specimen many times we can expect that
the actual mean direction will 1lie in (100 - «) % within the con-
fidence region and in o % without it. Since the confidence region
is a random object one ought to say that the actual principal
direction lies in the c¢onfidence region with certain confidence

rather then probability.

In one measurement of a specimen, three confidence regions are

(24)



obtained, one for each principal direction, as it is shown in the

Fig. 4 which is a sketch of typical result.

It is obvious, that the three confidence regions are not inde-
pendent on one another. The 1st "cemi-axis” of the 1st (2nd,
3rd) confidence region lies almost precisely on a common great
circle with the 2nd "semi-axis" of the 2nd (3rd, 1st) confidence
region. At the same time the confidence regions meet the conditi-

ons

37 e = e e m e ‘ e = e
r

(Sometimes the 1st and the 2nd confidence angle for certain
principal direction must be perhaps interchanged). All the six
confidence angles are printed by the program, but it seems that

even a triad of angles would do.

S : o

e

Fig. 4 Example of confidence regions

(25)



9. COMPLETION OF DEVIATORIC TENSOR TO THE FULL ONE

When measuring the anisotropy of susceptibility by the spin-
ning specimen method, only the deviatoric tensor of susceptibili-
ty g 1is obtained. To get the full tensor one directional
susceptibility is needed. Usualy the direction of one axis of the
specimen coordinate system is chosen; here will be considered the
direction of X . The respective direction susceptibility is kll.

The full tensor k will be obtained if to all the three diagonal

elements of the deviatoric tensor g will be added the term
(37) k -g
which can be also written in the matrix way as follows

(38) k=(k -9 )

B N u B B

I +4qg

where I is the identity matrix.

10. ON THE PRCGRAM SUSAR

For measuring the susceptibility by the spinning specimen
metod on the KLY-3 susceptibility bridge a rather extensive
program SUSAR was written. The source code is in Microsoft Basic

language and is accessible to every user of the KLY-3.

The comprehensive part of the program serves for control of

the instrument and for maintaining the proper sequence of

(26)



operation. The numerical part is not very complicated but it
needs to pay utmost attention to the indices which can be
confused easily. The crucial point of the numerical problems is
finding the eigevalues and eigenvectors of a symmetric matrix.
The Jacobki iterative method was chosed that gives eigenvalues and
eigenvectors at the same time and ensures perfect orthogonality
of the latters. Besides the problem described here the program
also performs transformation to further coordinate systems -
geographical, palecgeographical and tectonic. For detail see

AGICO Print No. 12.

Any practical experience with the program will be greatly

appreciated by the present author.

REMARKS ON NOTATICN

The notation had %o be matched to the editor wused, as a con-
sequence there are some minor differences in present document

from the notation which is now being settled.

(i} Column matrices (algebraic vectors) are denoted by
underscored italics (e.g. p) - instead of semibold italics.

(ii) all other types of matrices are denoted by upright
underscored letters (e.g. k) - instead of upright semibold
letters.

(iii) The eigenvalues of the deviatoric susceptibility matrix

are denoted £ - more logical would be ?~ . #

(27)



